skip to main content


Search for: All records

Creators/Authors contains: "Lewis, Samantha M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory. 
    more » « less
  2. Abstract

    A plasma haloscope has recently been proposed as a feasible approach to extend the search for dark matter axions above 10 GHz (≈40 eV), whereby the microwave cavity in a conventional axion haloscope is supplanted by a wire array metamaterial. Since the plasma frequency of a metamaterial is determined by its unit cell, and is thus a bulk property, a metamaterial resonator of any frequency can be made arbitrarily large, in contrast to a microwave cavity which incurs a steep penalty in volume with increasing frequency. To assess the actual potential of this concept as a practical dark matter haloscope, the basic properties of wire array metamaterials have been investigated through an extensive series ofS21measurements in the 10 GHz range. This report presents some new systematics of wire array metamaterials themselves including the approach to full plasmonic behavior, the applicability of the semianalytic theory of Belov, and estimates of the loss term which bode favorably for the plasmonic haloscope application. This present work constitutes the first precision test of the semianalytic theory of Belov et al., for which the predicted plasma frequency agrees with the experimental value at the 0.1% level.

     
    more » « less
  3. null (Ed.)